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Collision kernels from velocity-selective optical pumping with magnetic depolarization
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We experimentally demonstrate how magnetic depolarization of velocity-selective optical pumping can be used
to single out the collisional cusp kernel best describing spin- and velocity-relaxing collisions between potassium
atoms and low-pressure helium. The range of pressures and transverse fields used simulate the optical pumping
regime pertinent to sodium guidestars employed in adaptive optics. We measure the precession of spin-velocity
modes under the application of transverse magnetic fields, simulating the natural configuration of mesospheric
sodium optical pumping in the geomagnetic field. We also provide a full theoretical account of the experimental
data using the recently developed cusp kernels, which realistically quantify velocity damping collisions in this
optical pumping regime. A single cusp kernel with a sharpness s = 13 ± 2 provides a global fit to the K-He data.
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I. INTRODUCTION

We demonstrate an alternative way to measure the transition
matrix W (v,v′) for velocity-changing collisions between
ground-state alkali-metal atoms and arbitrary buffer-gas atoms
or molecules in the classical limit. This matrix contains all
of the information required for computing the contribution
of collisions to the evolution of nonequilibrium velocity
distributions in the vapor, which can be written as a Master
equation

∂p(v,t)

∂t
= −γvdp(v,t) + γvd

∫
dv′W (v,v′)p(v′,t), (1)

where p(v,t) is the time-dependent velocity distribution
and γvd is the rate of velocity-changing collisions. Precise
measurements of this matrix have long been of interest as a
way to place empirical constraints on the interatomic potential
for alkali-metal–buffer-gas pairs [1]. Two new applications
demand an increasingly precise knowledge of W (v,v′). First of
all, the ease with which nonequilibrium velocity distributions
can be created through velocity-selective optical pumping
makes alkali-metal vapor cells an ideal candidate for inves-
tigating new theorems of nonequilibrium statistical mechanics
(reviewed in [2]). W (v,v′) is the transition probability that
arises in Markov derivations of these theorems, and quan-
titative knowledge of its behavior for real systems would
make such experiments easier to design and analyze. Second,
laser guidestars employed in the adaptive optics systems
of modern terrestrial observatories produce nonequilibrium
velocity distributions of optically pumped mesospheric sodium
atoms. The numerical models used for optimizing the laser
parameters for maximum backscatter require W (v,v′) as input,
but the dearth of empirical measurements for sodium-air
collisions has forced current models to use a highly simplified
model, where W (v,v′) is the Boltzmann distribution in v

independent of v′ [3]. In Sec. II we present the theory behind
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our measurement, while in Sec. III we discuss the experiment
and data analysis.

II. THEORY

The theoretical framework we employed to design the
experiment and analyze our data is laid out in detail in [4].
Here we summarize the points that are most directly relevant
to the current work.

We model the vapor cell as an ensemble of single atoms
whose velocities are perturbed by collisions with atoms of an
inert buffer gas and with the cell walls. Since radiation-pressure
effects relevant to laser cooling experiments are negligible at
the high temperatures that we are interested in, the equilibrium
velocity distribution of atoms in the buffer gas remains the
Maxwell-Boltzmann distribution even in the presence of laser
light. It will be convenient to measure atomic velocities in
units of the most probable speed, vD = √

2kBT /M , where T

is the temperature of the cell and M is the mass of the atom.
We will denote the projection v of the atomic velocity onto
the laser beam direction by x = v/vD . Although the overall
velocity distribution remains constant, the incident laser beam
introduces correlations between the spins and the velocities:
due to the Doppler shift, a laser at frequency ω excites a
resonance at frequency ω0 only in atoms with velocity x0 =
(ω − ω0)/kvD along the beam. This is the origin of “velocity-
selective optical pumping” (VSOP), whereby the distribution
of atomic spin states becomes velocity dependent. We assume
the laser is weak enough that the small fraction of atoms in
the excited states at any given time can be ignored, so the
effect of the laser is to modify the distribution of ground-state
sublevels at the resonant velocities. The distribution among
energy sublevels |μ〉 for atoms with velocities between x and
x + dx is described by the (2I + 1)(2S + 1) × (2I + 1)(2S +
1) density matrix dρ(x)dx = ∑

μν χμν(x)|μ〉〈ν| dx, where S

and I are the electron and nuclear spin quantum numbers,
respectively, and |μ〉 and |ν〉 are eigenstates of the ground-
state Hamiltonian with eigenvalues Eμ and Eν , respectively.
The ground-state Hamiltonian includes hyperfine splitting and
Zeeman coupling to an external magnetic field. χμν(x) are the
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FIG. 1. (Color online) (a) The monochromatic, circularly polar-
ized pump laser of frequency ω selectively spin polarizes atoms in the
velocity group around vω that is Doppler shifted into resonance. The
counterpropagating probe beam of the same laser probes atoms at the
velocity group around −vω. Pumped atoms collide with buffer-gas
atoms, and each collision transfers atoms from velocity v to velocity
v′ with probability W (v,v′), shown in (b) for v′ = vω. (c) To the
first order in pump intensity, the overall effect of all the collisions is
to add a broad “pedestal” given by W (v,vω) to the sharply peaked
distribution of average spin as a function of velocity. Since the
absorption of the circularly polarized probe beam depends on the
atomic spin, scanning the laser frequency provides a measurement
of W (−vω,vω). (d) A transverse magnetic field causes the spins
to precess as the atoms diffuse through velocity space, providing
a precise “clock” that helps constrain estimates of the damping rates
required to analyze the data. The effect of this spin precession is
clearly seen in the sign reversal of W (−vω,vω) at B⊥ = 0.5 G relative
to the value at 0 G.

velocity-dependent amplitudes of the density-matrix elements
|μ〉〈ν|.

In a VSOP situation with no velocity-changing collisions,
some of the density-matrix elements will have amplitudes
χμν(x) sharply peaked around the resonant velocities x0. As
illustrated in Fig. 1, adding an inert buffer gas allows atoms
pumped at the resonant velocities to jump to other, nonresonant
velocities through collisions with the buffer gas that change the
atomic velocity while preserving spin polarization. Figure 1
also displays the effect of a transverse magnetic field, which
causes Larmor precession of the spins while the atom diffuses
from the pump resonant velocity to the probe resonant velocity,
thus adding a new tunable time scale to the problem.

The velocity-changing collisions are characterized by the
“collision kernel” W (x,x ′), which gives the probability that an
atom with initial velocity x ′ will have velocity x after a single
collision. Since our atoms remain in the spherically symmetric
l = 0 state of orbital angular momentum for the overwhelming
majority of the time, the collision kernel is independent of the
internal atomic state. The overall effect of collisions is to give
χμν(x) a broad pedestal around the sharp resonant spike, and

the shape of this pedestal contains valuable information about
the collision kernel. To extract this information, we need to first
write the steady-state solutions to the evolution equation for
the χμν’s in terms of W (x,x ′), and then find a good ansatz form
for W (x,x ′) that can reproduce experimental data through the
appropriate adjustment of a few free parameters.

The evolution of the velocity distribution χμν(x) of density-
matrix element |μ〉〈ν| is described by

∂χμν(x,t)

∂t
= −

∫
Kμν(x,x ′)χμν(x ′,t)dx ′ + Pμν(x), (2)

where the damping kernel is

Kμν(x,x ′) = [γw + i�μν + γvd]δ(x − x ′) − γvdW (x,x ′).
(3)

The rate of loss of polarized atoms due to diffusion or free flight
to the walls is γw. The Bohr frequencies �μν = (Eμ − Eν)/h̄
depend on the applied magnetic field. For laboratory experi-
ments with alkali-metal atoms in low buffer-gas pressures, the
direct damping of spin polarization by gas-phase collisions can
be neglected, since practical buffer gases like N2 or the noble
gases He, Ne, Ar, etc. have such small spin-flip rates compared
to γw. The main effect of the buffer gas on spin relaxation is
to lengthen the time needed for a polarized atom to diffuse to
the wall, that is, to decrease γw. The rate of velocity relaxation
due to the buffer gas is parametrized by the rate γvd at which
atoms with initial velocity x ′ are transferred to a range of final
velocities x.

The laser-atom interaction that creates the nonequilibrium
distribution of optically pumped atoms enters the model
through the source term Pμν = Pμν(x,χμ′ν ′), which depends
on the values χμ′ν ′(x) of all the density-matrix element
amplitudes at velocity x. For a true monochromatic light source
exciting electrons to states with infinite lifetimes, Pμν would
be a superposition of δ functions. In fact, the finite excited-
state lifetime, finite laser linewidth, and other experimental
issues combine to produce a Lorentzian source term with a
particular width, which can be empirically determined from a
measurement without buffer gas.

The nonequilibrium steady-state velocity distribution of the
density-matrix element |μ〉〈ν| is found by setting ∂χμν/∂t = 0
in Eq. (2), and is formally given by

χμν(x) =
∫

K−1
μν (x,x ′)Pμν(x ′)dx ′, (4)

where the inverse damping kernel is defined by∫
K−1

μν (x,x ′)Kμν(x ′,x ′′)dx ′ = δ(x − x ′′). Note that Pμν de-
pends on the χμν’s, so this is not a closed-form solution, but we
can use it to obtain a power-series solution in the pump-laser
intensity, as shown explicitly in Eqs. (134) through (136) of [4].
Our numerical calculations use the first-order solution, given
by Eqs. (137) through (140) of [4].

We now need a physically reasonable and computationally
tractable ansatz for W (x,x ′) in order to extract information
about the collisions from experimental signals. McGuyer et al.
have shown that “cusp kernels” Cs(x,x ′) meet these require-
ments [5]. The cusp kernel function has a single free parameter
s called the “sharpness”, which we will employ as a fit
parameter to match our model predictions to our experimental
data. Under the assumption that the collision kernel can be

043412-2



COLLISION KERNELS FROM VELOCITY-SELECTIVE . . . PHYSICAL REVIEW A 87, 043412 (2013)

modeled by a single cusp kernel, W (x,x ′) = Cs(x,x ′), the
inverse damping kernel K−1

μν takes on the particularly simple
form [5]

K−1
μν (x,x ′) = 1

γw + i�μν + γvd

×
[
δ(x − x ′) + γvd

γw + i�μν

Crμν
(x,x ′)

]
. (5)

That is, the inverse kernel is the sum of a δ-function and another
cusp kernel with modified sharpness rμν given by

rμν = γw + i�μν

γw + i�μν + γvd
s. (6)

The δ-function part comes from atoms that have not had
collisions with the buffer gas, and the cusp kernel part contains
the net result of all the buffer-gas collisions that take place over
the lifetime of a spin-polarized atom. In [4] and in our Fig. 1,
we represent this “pedestal” term that contains the collision
information by the symbol W̄ (x,x ′).

Using this result and Eq. (4), we can obtain the steady-state
χμν’s in terms of the atomic parameters γw, γvd, and s.
The rates γw and γvd can be determined experimentally,
so the solution has s as its only free parameter. Once we
calculate the probe beam absorption spectrum from the χμν’s,
we can easily find the sharpness s that gives a least-squares
best fit to the data.

The experiment we performed is similar to the experiment
of Aminoff et al. [6], with the main difference being our
addition of magnetic depolarization via Larmor precession
around a transverse magnetic field. The authors in [6] noted
that the traditionally used Keilson-Storer kernel was a poor
approximation of the actual kernel, since it could not fit the
data over a broad range of pressures and the kernel’s parameter
was thus not unique but pressure dependent. In contrast, we
will demonstrate that a cusp kernel with a single sharpness
can provide a global fit to the data. The additional, exper-
imentally controllable parameter of the transverse magnetic
field, incorporated in our formalism through the frequencies
�μν , provides a systematic check of our understanding of the
kernel [7–11].

III. EXPERIMENT AND DATA ANALYSIS

Figure 2 schematically depicts our apparatus. We inserted
one of three cylindrical sealed glass cells containing potassium
and helium buffer gas at three different pressures into the
path of two counterpropagating circularly polarized beams
from a Toptica DL Pro tunable diode laser. The pump beam
produces the spin-velocity correlations, which are measured
by the much weaker probe beam. To amplify the signal, we
modulated the circular polarization of the probe beam with a
photoelastic modulator (PEM), cycling the polarization from
right circular to left circular and back at a frequency of 42 kHz.
Since the potassium vapor transmits both polarizations with the
same efficiency in the absence of optical pumping, we were
able to isolate and amplify the effect of optical pumping on
the transmission efficiency of the probe beam with a lock-in
amplifier phase locked to the PEM, while slowly scanning the
laser frequency over the potassium’s Doppler profile.
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FIG. 2. (Color online) Counterpropagating pump-probe lasers
create and probe nonequilibrium spin-velocity distributions of potas-
sium vapor in helium buffer gas. The atoms are contained in sealed
glass cells of 1/2 in diameter and 5/4 in length, residing in an oven
air heated at 69 ± 0.2 ◦C to maintain a high enough potassium vapor
pressure of natural isotopic abundance, 93.26% 39K and 6.73% 41K.
The cell and oven reside in the middle of three pairs of Helmholtz
coils along three mutually orthogonal axes providing a homogeneous,
constant, and tunable magnetic field. The intensities of the two
counterpropagating beams were independently controlled with two
neutral density filters. An angular separation of less than 5 mrad
was introduced between the beams to avoid blockage of the probe
detection photodiode by the pump mirror.

Since the pump beam only pumps atoms having veloc-
ities xμν̄ = (ω − ωμν̄)/kvD , where ωμν̄ is the frequency of
the transition from ground-state sublevel μ to excited-state
sublevel ν̄, and the probe beam only interacts with atoms
with opposite velocities −xμν̄ , the spectrum of probe beam
transmission will display sharp saturated-absorption spikes
at ωμν̄ as well as the crossover lines (ωμν̄ + ωμ′ν̄ ′ )/2, where
the pump and probe beams can simultaneously interact with
the same atoms. As discussed above, the velocity-changing
collisions superimpose a broad pedestal on these spikes, which
contains the desired information about the kernel W (x,x ′). To
ensure that the probe beam does not modify the atomic density
matrix, we measured the height of the tallest spike at various
probe intensities and a constant pump intensity, by adjusting
filter NDF2 in Fig. 2. At low probe intensities, the height scales
linearly with intensity, while it becomes quadratic as the probe
beam begins to modify the spin polarization. We observed
that a ratio of probe-to-pump intensity of about 10% was well
within the linear regime, so we set NDF2 to the corresponding
attenuation. Similarly, we confirmed that we could safely
neglect the second- and higher-order terms in pump beam
intensity from the series solution of Eq. (4) by examining the
resonance’s scaling with pump intensity and staying within
the linear regime. As indicated in Fig. 2, the filter (NDF1)
for adjusting the pump intensity was positioned before the
beam splitter, so that we could adjust the pump intensity
at a constant probe/pump intensity ratio. In the first-order
regime, the transmitted intensity should scale linearly with
each beam intensity individually, and so their simultaneous
variation should produce a quadratic shape. We set NDF1 so
that we are well within this quadratic regime.
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FIG. 3. (Color online) Potassium-helium data. Shown is the measured (red lines) and calculated (blue, dashed lines) absorption rate of the
probe beam for three different magnetic fields (zero field, 0.2 G, and 0.5 G, transverse to the laser propagation direction) at pressures of 32, 65,
and 120 mTorr. The theoretical rates were calculated assuming that the velocity-changing collisions are well modeled by a single cusp kernel,
with the sharpness s = 13 determined by a least-squares best fit to all the data.

In Fig. 3, we show the data acquired from our three cells at
three different transverse magnetic fields for each cell, along
with the theoretical fits. To compare the measured line shapes
to the cusp kernel predictions, we used Eqs. (143) through
(147) of [4] to obtain the first-order line-shape corrections
from the spin mode amplitudes χμν . The required rates γvd

and γw were obtained from the expressions

γvd = v2
D

2D
(s + 1) (7)

and

1

γw
= a

vD

+ a2

8D

[
1 + 4 ln

(
b

a

)]
, (8)

given in Eqs. (A1) and (79) of [4], respectively. The most
probable speed vD and the sharpness parameter s have already
been defined. The laser beam and cell radii are a = 0.06 cm
and b = 0.56 cm, respectively, and D is the diffusion coef-
ficient of potassium atoms in helium, inversely proportional
to the helium pressure. We used the value D0 = 0.45 cm2/s
for 1 atm of helium. Equation (7) relating γvd to the diffusion
coefficient D is a special case of a relation introduced by
Berman et al. for reducing the number of free parameters in
VSOP collision kernel measurements [12].

To correct for potassium’s optical thickness, leading to
pump and probe intensity variation along the length of the
cell, we divide the data by the factor

f (ω) = e−σ (ω)nl

σ (ω)
(1 − e−σ (ω)nl), (9)

where σ (ω) is the absorption cross section of the unpolarized
potassium atoms, n is the number density of potassium atoms
(a known function of temperature [13]), and l = 2.7 cm is the
length of the cell.

We also had to account for the fact that our pressure gauge
had a large uncertainty at the low pressures we were using. To
get a good fit, we had to adjust the pressure values input to the
model within the range of uncertainty, and ultimately use the
values 32, 65, and 120 mTorr instead of the nominal 25, 50,
and 100. Finally, we added one more free parameter to match
the absolute scale of the y axis in Fig. 3 between model and
data. We used the same scale factor for all nine data traces in
Fig. 3. The simultaneous least-squares fit of the model to the
nine data traces is superimposed on the data in Fig. 3, resulting
in a sharpness of s = 13 ± 2.

IV. CONCLUSIONS

In conclusion, we have demonstrated a simple way to
accurately determine the sharpness of cusp kernels modeling
velocity-selective optical pumping. In particular, we have
shown that a single cusp kernel is sufficient to reproduce line-
shape measurements far from the Maxwell-Boltzmann equi-
librium, across a variety of pressures and magnetic fields. The
employed method of magnetic depolarization allows a rapid,
experimentally straightforward and accurate measurement of
collision kernels useful for constraining interatomic potentials,
testing nonequilibrium statistical mechanics theorems, or
optimizing laser guidestar systems.
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